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[1] Any model of tides is based on a specific hypothesis of how lagging depends on the
tidal-flexure frequency c. For example, Gerstenkorn (1955), MacDonald (1964), and
Kaula (1964) assumed constancy of the geometric lag angle d, while Singer (1968) and
Mignard (1979, 1980) asserted constancy of the time lag Dt. Thus each of these two
models was based on a certain law of scaling of the geometric lag: the Gerstenkorn-
MacDonald-Kaula theory implied that d � c0, while the Singer-Mignard theory postulated
d � c1. The actual dependence of the geometric lag on the frequency is more complicated
and is determined by the rheology of the planet. Besides, each particular functional
form of this dependence will unambiguously fix the appropriate form of the frequency
dependence of the tidal quality factor, Q(c). Since at present we know the shape of the
function Q(c), we can reverse our line of reasoning and single out the appropriate
actual frequency dependence of the lag, d(c): as within the frequency range of our concern
Q � ca, a = 0.2–0.4, then d � c�a. This dependence turns out to be different from those
employed hitherto, and it entails considerable alterations in the timescales of the tide-
generated dynamical evolution. Phobos’s fall on Mars is an example we consider.
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1. Introduction

[2] If a satellite is located at a planetocentric position~r, it
generates a tidal bulge that either advances or retards the
satellite motion, depending on the interrelation between the
planetary spin rate wp and the tangential part of satellite’s
velocity~v divided by r � j~rj. It is convenient to imagine (as
on Figure 1) that the bulge emerges beneath a fictitious
satellite located at

~rf ¼ ~r þ ~f ; ð1Þ

where the position lag ~f is given by

~f ¼ Dt ~wp 	~r � ~v
� �

: ð2Þ

Dt is the time lag between the real and fictitious tide-
generating satellites, and the inclination and eccentricity of
the satellite are assumed sufficiently small.
[3] The fictitious satellite is merely a way of illustrating

the time lag between the tide-raising potential and the
distortion of the body. This concept implies no new physics,
and is but a convenient metaphor employed to convey that
at each instance of time the dynamical tide is modeled with
a static tide where all the time-dependent variables are

shifted back by Dt, i.e., (1) the moon is rotated back by
~v Dt, and (2) the attitude of the planet is rotated back by ~wp

Dt. From the viewpoint of a planet-based observer, this
means that a dynamical response to a satellite located at~r is
modeled with a static response to a satellite located at~rf �
~r � Dt (~v � ~wp 	~r), provided we take into account only
the principal bulge. Neglect of the higher frequencies is
permissible for small eccentricities and inclination. In this
case it is acceptable to use the fictitious-satellite metaphor
as a euphemism for bulge lagging.
[4] In this paper, we intend to dwell on geophysical

issues: the frequency dependence of the attenuation rate
and its consequences. Hence, to avoid unnecessary mathe-
matical complications, in the subsequent illustrative example
we shall restrict ourselves to the simple case of a tide-raising
satellite on a near-equatorial near-circular orbit. In this
approximation, the velocity of the satellite relative to the
surface is

j~wp 	~r �~vj ¼ rjwp � nj; ð3Þ

the principal tidal frequency is

c ¼ 2jwp � nj; ð4Þ

and the angular lag is

d ¼ Dt

r
j~wp 	~r �~vj ¼ Dt

2
c; ð5Þ

n being the satellite’s mean motion, and ~wp being the
planet’s spin rate. The factor of two emerges in (4) since
the moon causes two elevations on the opposite sides of the

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, E12003, doi:10.1029/2007JE002908, 2007
Click
Here

for

Full
Article

1U.S. Naval Observatory, Washington, D. C., USA.
2IMCCE-Observatoire de Paris, UMR 8028 du CNRS, Paris, France.
3Observatoire Royal de Belgique, Brussels, Belgium.

This paper is not subject to U.S. copyright.
Published in 2007 by the American Geophysical Union.

E12003 1 of 11

http://dx.doi.org/10.1029/2007JE002908


Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2007 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2007 to 00-00-2007  

4. TITLE AND SUBTITLE 
Physics of Bodily Tides in Terrestrial Planets and the Appropriate Scales
of Dynamical Evolution 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
U.S. Naval Observatory ,3450 Massachusetts 
Ave,Washington,DC,20392-5420 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

11 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



planet. It will also be assumed that c Dt 
1, for which
reason we shall neglect the second-order difference between
the expression (5) and the angle subtended at the planet’s
center between the moon and the tidal bulge (rigorously
speaking, the sine of the subtended angle is equal to~f 	~r/r2).
[5] The starting point of all tidal models is that each

elementary volume of the planet is subject to a tide-raising
potential, which in general is not periodic but can be
expanded into a sum of periodic terms. Within the linear
approximation introduced by Love, the tidal perturbations
of the potential yield linear response of the shape and linear
variations of the stress. In extension of the linearity approx-
imation, it is always implied that the overall dissipation
inside the planet may be represented as a sum of attenuation
rates corresponding to each periodic disturbance:

h _E i ¼
X
i

h _E cið Þ i ð6Þ

where, at each frequency ci,

h _E cið Þi ¼ �2ci

hE cið Þi
Q cið Þ ¼ � ci

Epeak cið Þ
Q cið Þ ; ð7Þ

h. . .i standing for averaging over flexure cycle, E(ci)
denoting the energy of deformation at the frequency ci, and
Q(ci) being the quality factor of the material at this
frequency. Introduced empirically as a means to figleaf our
lack of knowledge of the attenuation process in its full
complexity, the notion of Q has proven to be practical due
to its smooth and universal dependence upon the frequency
and temperature. An alternative to employment of the
empirical Q factors would be comprehensive modeling of
dissipation using a solution of the equations of motion,

given a rheological description of the mantle [Mitrovica and
Peltier, 1992; Hanyk et al., 1998, 2000; Moore and
Schubert, 2000]. Though providing a valuable yield for a
geophysicist, this comprehensive approach may be avoided
in astronomy, where only the final outcome, the frequency
dependence of Q, is important. Fortunately, this dependence
is already available from observations.
[6] In this paper we shall restrict ourselves to the simple

case of an equatorial or near-equatorial satellite describing a
circular or near-circular orbit. Under these circumstances
only the principal tidal frequency (4) will matter.

2. Quality Factor Q and the Geometric
Lag Angle d
[7] During tidal flexure, the energy attenuation through

friction is, as ever, accompanied by a phase shift between
the action and the response. The tidal quality factor is
interconnected with the phase lag � and the angular lag d via

Q�1 ¼ tan � ¼ tan 2d ð8Þ

or, for small lag angles,

Q�1  � ¼ 2 d: ð9Þ

The doubling of the lag is a nontrivial issue. Many authors
erroneously state that Q�1 is equal simply to the tangent of
the lag, with the factor of two omitted. For example, Rainey
and Aharonson [2006] assume that Q�1 is equal to the
tangent of the geometric lag. As a result, they arrive at a
value of Q that is about twice larger than those obtained by
the other teams. Bills et al. [2005] used one letter, g, to
denote two different angles. Prior to equation (24) in that
paper, g signifies the geometric lag (in our notations, d1).
Further, in their equations (24) and (25), Bills et al. [2005]
employ the notation g to denote the phase lag (in our
notations, �, which happens to be equal to 2 d1). With this
crucial caveat, Bills et al.’s [2005] equation Q = 1/tang is
correct. The inaccuracy in notations has not prevented Bills
et al. [2005] from arriving at a reasonable value of the
Martian quality factor, 85.58 ± 0.37. (A more recent study
by Lainey et al. [2007] has given a comparable value of
79.91 ± 0.69.)
[8] In Appendix A, section A1, we offer a simple

illustrative calculation, which explains whence this factor
of two stems.
[9] Formulae (8)–(9) look reasonable: the higher the

quality factor, the lower the damping rate and, accordingly,
the smaller the lag. What looks very far from being OK are
the frequency dependencies ensuing from the assertions of d
being either constant or linear in frequency: the approach
taken by Gerstenkorn [1955], MacDonald [1964], and
Kaula [1964] implies that Q � c0, while the theory of
Singer [1968] and Mignard [1979, 1980] yields Q � c�1,
neither option being in agreement with the geophysical data.

3. Dissipation in the Mantle

3.1. Generalities

[10] Back in the 60s and 70s of the past century, when the
science of low-frequency seismological measurements was

Figure 1. A planet and a tide-raising moon. This picture
illustrates the case of a satellite located below the
synchronous orbit, so that its mean motion n exceeds
the planet’s spin rate wp, and the tidal bulge is lagging.
The angular lag defined as d � j~f j/r = Lt

r
j~wp 	 ~r � ~vj

will, generally, differ from the absolute value of the angle
d1 subtended at the planet’s center between the directions
to the satellite and the bulge. Since in our study we
consider an example with a small eccentricity and
inclination, we make no distinction between d and jd1j.
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yet under development, it was widely thought that at long
timescales the quality factor of the mantle is proportional to
the inverse of the frequency. This fallacy proliferated into
planetary astronomy where it was received most warmly,
because the law Q � 1/c turned out to be the only model for
which the linear decomposition of the tide gives a set of
bulges displaced from the direction to the satellite by the
same angle. Any other frequency dependence Q(c) entails
superposition of bulges corresponding to the separate fre-
quencies, each bulge being displaced by its own angle. This
is the reason why the scaling law Q � 1/c, long disproved
and abandoned in geophysics (at least, for the frequency
band of our concern), still remains a pet model in celestial
mechanics of the solar system.
[11] Over the past 20 a (where a is years), considerable

progress has been achieved in the low-frequency seismo-
logical measurements, both in the lab and in the field. Due
to an impressive collective effort undertaken by several
teams, it is now a firmly established fact that for frequencies
down to about �1 a�1 the quality factor of the mantle is
proportional to the frequency to the power of a positive
fraction a. This dependence holds for all rocks within a
remarkably broad band of frequencies: from several MHz
down to about 1 a�1.
[12] At timescales longer than 1 a, all the way to the

Maxwell time (about 100 a), attenuation in the mantle is
defined by viscosity, so that the quality factor is, for all
minerals, well approximated with hc/M, where h and M are
the shear viscosity and the shear elastic modulus of the
mineral. Although the values of both the viscosity coeffi-
cients and elastic moduli greatly vary for different minerals
and are sensitive to the temperature, the overall quality
factor of the mantle at such long timescales still is linear in
frequency.
[13] At present there is no consensus in the seismological

community in regard to the time scales exceeding the
Maxwell time. One viewpoint (incompatible with the Max-
well model) is that the linear law Q � c extends all the way
down to the zero-frequency limit [Karato, 2007]. An
alternative point of view (prompted by the Maxwell model)
is that at scales longer than the Maxwell time we return to
the inverse-frequency law Q �1/c.

All in all, we can write (using the notation a for years)

For 107 Hz > c > 1 a�1 : Q � ca;

with a ¼ 0:2� 0:4 0:2 for partial meltsð Þ: ð10Þ

For 1 a�1 > c > 10�2 a�1 : Q � c: ð11Þ

For 10�2 a�1 > c : arguably; it is still Q � c:

Or maybe Q � 1=c?ð Þ ð12Þ

Fortunately, in practical calculations of tides in planets one
never has to transcend the Maxwell timescales, so the
controversy remaining in (12) bears no relevance to our
subject. We leave for a future study the case of synchronous
satellites, the unique case of the Pluto-Charon resonance, or
the binary asteroids locked in the same resonance. Thus we

shall avoid also the frequency band addressed in (11), but
shall be interested solely in the frequency range described in
(10). It is important to emphasize that the positive-power
scaling law (10) is well proven not only for samples in the
lab but also for vast seismological basins and, therefore, is
universal. Hence this law may be extended to the tidal
friction; validity of this extension will be discussed in
section 3.4.1.
[14] Below we provide an extremely condensed review of

the published data whence the scaling law (10) was derived
by the geophysicists. The list of sources will be incomplete,
but a full picture can be obtained through the further
references contained in the works to be quoted below. For
a detailed treatment, see chapter 11 of the book by Karato
[2007], which contains a systematic introduction into the
theory of and experiments on attenuation in the mantle.

3.2. Circumstantial Evidence: Attenuation in
Minerals—Laboratory Measurements
and Some Theory

[15] Even before the subtleties of solid-state mechanics
with or without melt are brought up, the positive sign of the
power a in the dependence Q � ca may be anticipated on
qualitative physical grounds. For a damped oscillator obey-
ing �z + 2 b _z + c2 z = 0, the quality factor is equal to c/(2b),
i.e., Q � c.
[16] Solid-state phenomena causing attenuation in the

mantle may be divided into three groups: the point-defect
mechanisms, the dislocation mechanisms, and the grain-
boundary ones.
[17] Among the point-defect mechanisms, most important

is the transient diffusional creep, i.e., plastic flow of
vacancies, and therefore of atoms, from one grain boundary
to another. The flow is called into being by the fact that
vacancies (as well as the other point defects) have different
energies at grain boundaries of different orientation relative
to the applied shear stress. This anelasticity mechanism is
wont to obey the power law Q � ca with a  0.5.
[18] Anelasticity caused by dislocation mechanisms is

governed by the viscosity law Q � c valid for sufficiently
low frequencies (or sufficiently high temperatures), i.e.,
when the viscous motion of dislocations is not restrained
by the elastic restoring stress. (At higher frequencies or/and
lower temperatures, the restoring force ‘‘pins’’ the defects.
This leads to the law Q � (1 + t2c2)t�1c�1, parameter t
being the relaxation time whose values considerably vary
among different mechanisms belonging to this group. As
the mantle is warm and viscous, we may ignore this caveat.)
[19] The grain-boundary mechanisms, too, are governed

by the law Q � ca, though with a lower exponent: a 
0.2–0.3. This behavior gradually changes to the viscous
mode (a = 1) at higher temperatures and/or at lower
frequencies, i.e., when the elastic restoring stress reduces.
[20] We see that in all cases the quality factor of minerals

should grow with frequency. Accordingly, laboratory meas-
urements confirm that, within the geophysically interesting
band of c, the quality factor behaves as Q � ca with a =
0.2–0.4. Such measurements have been described by
Karato and Spetzler [1990] and Karato [1998]. Similar
results were reported in the works by the team of I. Jackson;
see, for example, the paper by Tan et al. [1997], where
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numerous earlier publications by that group are also
mentioned.
[21] In aggregates with partial melt the frequency depen-

dence of Q keeps the same form, with a leaning to 0.2 [see,
for example, Fontaine et al., 2005, and references therein].

3.3. Direct Evidence: Attenuation in the Mantle—
Measurements on Seismological Basins

[22] As we are interested in the attenuation of tides, we
should be prepared to face the possible existence of mech-
anisms that may show themselves over very large geolog-
ical structures but not in small samples explored in the lab.
No matter whether such mechanisms exist or not, we would
find it safer to require that the positive-power scaling law
Q � ca, even though well proven in the lab, be propped
up by direct seismological evidence gathered over vast
zones of the mantle. Fortunately, such data are available,
and for the frequency range of our interest these data
conform well with the lab results. The low-frequency
measurements, performed by different teams over various
basins of the Earth’s upper mantle, agree on the pivotal fact:
the seismological quality factor scales as the frequency to
the power of a positive fraction a; see, for example,
Mitchell [1995], Stachnik et al. [2004], Shito et al. [2004],
and further references given in these sources.
[23] So far, Figure 11 of Flanagan and Wiens [1998] is

the only experimental account we know of, which only
partially complies with the other teams’ results. The figure
contains two plots depicting the frequency dependencies of
1/Qshear and 1/Qcompress. While the behavior of both param-
eters remains conventional down to 10�1 Hz, the shear
attenuation surprisingly goes down when the frequency
decreases to 10�3 Hz. Later, one of the authors wrote to
us that ‘‘Both P and S wave attenuation becomes greater at
low frequencies. The trend towards lower attenuation at the
lowest frequencies in Figure 11 is not well substantiated’’
(D. Wiens, private communication, 2006). Hence the con-
sensus on (10) stays.

3.4. Consequences for the Tides

3.4.1. Tidal Dissipation Versus Seismic Dissipation
[24] For terrestrial planets, the frequency dependence of

the Q factor of bodily tides is similar to the frequency
dependence (10)–(11) of the seismological Q factor. This
premise is based on the fact that the tidal attenuation in the
mantle is taking place, much like the seismic attenuation,
mainly due to the mantle’s nonrigidity. This is a nontrivial
fact because, in distinction from earthquakes, the damping
of tides is taking place both due to nonrigidity and self-
gravity of the planet. Modeling the planet with a homoge-
neous sphere of density r, rigidity m, surface gravity g, and
radius R, Goldreich [1963] managed to separate the non-
rigidity-caused and self-gravity-caused inputs into the over-
all tidal attenuation. His expression for the tidal quality
factor has the form

Q ¼ Qo 1 þ 2

19

g r R

m

� �
; ð13Þ

Qo being the value that the quality factor would assume
were self-gravity absent. To get an idea of how significant

the self-gravity-produced input could be, let us plug there
the mass and radius of Mars and the rigidity of the Martian
mantle. For the Earth’s mantle, m = 65 � 80 GPa. Judging
by the absence of volcanic activity over the past hundred(s)
of millions of years of Mars’ history, the temperature of the
Martian upper mantle is (to say the least) not higher than
that of the terrestrial one. Therefore we may safely
approximate the Martian m with the upper limit for the
rigidity of the terrestrial mantle: m = 1011 Pa. All in all, the
relative contribution from self-gravity will look as

2

19

g r R

m
¼ 6

76p
g M2

m R4

 1

40

6:7	 10
�11

m
3

kg
�1

s
�2

� �
6:4	 10

23

kg
� �2

10
11
Pað Þ 3:4	 10

6
mð Þ

4

 5:2	 10
�2

;

ð14Þ

g denoting the gravity constant. This, very conservative
estimate shows that self-gravitation contributes, at most,
several percent into the overall count of energy losses due to
tides. This is the reason why we extend to the tidal Q the
frequency dependence law measured for the seismic quality
factor.
3.4.2. Dissipation in the Planet Versus Dissipation in
the Satellite
[25] A special situation is tidal relaxation toward the state

where one body shows the same side to another. Numerous
satellites show, up to librations, the same face to their
primaries. Among the planets, Pluto does this to Charon.
Such a complete locking is typical also for binary asteroids.
A gradual approach toward the synchronous orbit involves
ever-decreasing frequencies, eventually exceeding the limits
of equation (11) and thus the bounds of the present
discussion. Mathematically, this situation still may be tack-
led by means of (10) until the tidal frequency c decreases to
1 a�1, and then by means of (11) while c remains above the
inverse Maxwell time of the planet’s material. Whether the
latter law can be extended to longer timescales remains an
open issue of a generic nature that is not related to a specific
model of tides or to a particular frequency dependence of Q.
The generic problem is whether we at all may use the
concept of the quality factor beyond the Maxwell time, or
should instead employ, beginning from some low c, a
comprehensive hydrodynamical model. In the current work,
we address solely the satellite-generated tides on the planet.
The input from the planet-caused tides on the satellite will
be considered elsewhere. The case of Pluto will not be
studied here either. Nor shall we address binary asteroids.
(Since at present most asteroids are presumed loosely
connected, and since we do not expect the dependencies
(10)–(11) to hold for such aggregates, our theory should
not, without some alterations, be applied to such binaries.)
[26] Thus, since we are talking only about dissipation

inside the planet, and are not addressing the exceptional
Pluto-Charon case, we may safely assume the tidal frequency
to always exceed 1 a�1. Thence (10) will render, for a typical
satellite,

Q � ca; with a ¼ 0:2� 0:4: ð15Þ
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Accordingly, (9) will entail

d � c�a; with a ¼ 0:2� 0:4: ð16Þ

[27] Another special situation is a satellite crossing a
synchronous orbit. At the moment of crossing, the principal
tidal frequency c = 2 jwp � nj vanishes. As (9) and (10)
yield Q  (2d)�1 and Q � ca, then we get d � c�a with a
positive a. Uncritical employment of these formulae will
then make one think that at this instant the lag d grows
infinitely, a clearly nonsensical result. The quandary is
resolved through the observation that the bulge is lagging
not only in its position but also in its height, for which
reason the dissipation rate remains finite (M. Efroimsky,
Tidal torques. A critical review of some techniques, 2007;
available at http://arxiv.org/PS_cache/arxiv/pdf/0712/
0712.1056v1.pdf). Since in this paper we shall not consider
crossing of or approach to synchronous orbits, and since the
example we aim at is Phobos, we shall not go deeper into
this matter here.

3.5. A Thermodynamical Aside: The Frequency and
the Temperature

[28] In the beginning of the preceding subsection we
already mentioned that though the tidal Q differs from the
seismic one, both depend upon the frequency in the same
way, because this dependence is determined by the same
physical mechanisms. This pertains also to the temperature
dependence, which for some fundamental reason combines
into one function with the frequency dependence.
[29] As explained, from the basic physical principles, by

Karato [1998, 2007], the frequency and temperature depen-
dencies of Q are inseparably connected. The quality factor
can, despite its frequency dependence, be dimensionless
only if it is a function not just of the frequency per se but of
a dimensionless product of the frequency by the typical time
of defect displacement. This time exponentially depends on
the activation energy A*, whence the resulting function is

Q � c exp A�=RTð Þ½ �a: ð17Þ

For most minerals of the upper mantle, A* lies within the
limits of 360–540 kJ mol�1. For example, for dry olivine it
is about 520 kJ mol�1.
[30] Thus, through formulae (17) and (9), the cooling rate

of the planet plays a role in the orbital evolution of
satellites: the lower the temperature, the higher the quality
factor and, thereby, the smaller the lag d. For the sake of a
crude estimate, assume that most of the tidal attenuation is
taking place in some layer, for which an average tempera-
ture T and an average activation energy A* may be intro-
duced. Then from (17) we have: DQ/Q  � a A* DT/RT.
For a reasonable choice of values a = 0.3 and A* = 5.4 	
105 J/mol a drop of the temperature from To = 2000 K down
by DT = 200 K will result in D Q/Q  1. So a 10%
decrease of the temperature can result in an about 100%
growth of the quality factor.

[31] Below we shall concentrate on the frequency depen-
dence solely.

4. Formulae

[32] The tidal potential perturbation acting on the tide-
raising satellite is

U d1ð Þ ¼ A2

r5
f
r5

3 ~rf �~r
� �2�~r 2f ~r 2� �

þ A3

r7
f
r7

5 ~rf �~r
� �2�3~r 2f ~r

2
� �

þ . . .

ð18Þ

where r � j~rj and rf � j~rf j, while the constants are given by

A2 �
k2GmR

5

2
; A3 �

k3GmR
7

2
; . . . ; ð19Þ

kn being the Love numbers. (For derivation of (18), see, for
example, MacDonald [1964, and references therein].)
[33] Three caveats will be appropriate at this point. First,

to (18) we should add the potential due to the tidal distortion
of the moon by the planet. That input contributes mainly to
the radial component of the tidal force exerted on the moon,
and entails a decrease in eccentricity and semimajor axis
[MacDonald, 1964]. Here we omit this term, since our goal
is to clarify the frequency dependence of the lag. Second,
we acknowledge that in many realistic situations the k3 and
sometimes even the k4 term is relevant [Bills et al., 2005].
With intention to keep these inputs in our subsequent work,
here we shall restrict our consideration to the leading term
only. Hence the ensuing formula for the tidal force will read

~FF ¼ � 3k2Gm
2R5

r7
~r

r
�
~f

r
� 2

~r

r

~r �~f
r2

þ O ~f 2=r2
� �" #

þ O k3Gm
2R7=r9

� �

 � 3k2Gm
2R5

r10
~r r2 �~f r2 � 2~r ~r �~f

� �h i
; ð20Þ

where we kept in mind that O(~f 2/r2) = O(d2) 
 1. The third
important caveat is that in our further exploitation of this
formula we shall take into account the frequency depen-
dence of the lag ~f , but not of the parameter k2. While the
dependence ~f (c) will be derived through the interconnec-
tion of~f with d(c) and therefore with Q(c), the value of k2
will be asserted constant. That the latter is acceptable can be
proven through the following formula obtained by Darwin
[1908] under the assumption of the planet being a Maxwell
body [see also Correia and Laskar, 2003]:

k2 cð Þ ¼ kfluid

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2h2=m2

1þ c2h2=m2ð Þ 1þ 19m= 2grRð Þð Þ2

s
:

Here kfluid is the so-called fluid Love number. This is the
value that k2 would have assumed had the planet consisted
of a perfect fluid with the same mass distribution as the
actual planet. Notations m, r, g, and g stand for the rigidity,
mean density, surface gravity, and the radius of the planet.
For these parameters, we shall keep using the estimates
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from section 3.4. The letter h signifies the viscosity. Up to
an order or two of magnitude, its value may be
approximated, for a terrestrial planet’s mantle, with
1022 kg/(m s). This will yield: c2 h2/m2 = (c 1011 s)2,
wherefrom we see that in all realistic situations pertaining to
terrestrial planets the frequency dependence in Darwin’s
formula will cancel out. Thus we shall neglect the frequency
dependence of the Love number k2 (but shall at the same
time take into account the frequency dependence of Q, for it
will induce frequency dependence of all three lags).
[34] The interconnection between the position, time, and

angular lags,

d � j~f j
r

¼ Dt
1

r
j ~wp 	~r � ~v j ¼ Dt

2
c; ð21Þ

can be equivalently rewritten as

~f ¼ f̂rd ¼ r
Dt

2
cf̂ ; ð22Þ

where

f̂ ¼
~wp 	~r �~v

j~wp 	~r �~vj ð23Þ

is a unit vector pointing in the lag direction.
[35] Be mindful that we assume the inclination and

eccentricity to be small, wherefore the ratio

j~f j
r

¼ Dt
1

r
j ~wp 	~r � ~v j

is simply the tangential angular lag, i.e., the geometric angle
subtended at the primary’s center between the moon and the
bulge. In the general case of a finite inclination or/and
eccentricity, all our formulae will remain in force, but the
lag d will no longer have the meaning of the subtended
angle.
[36] At this point, it would be convenient to introduce a

dimensional integral parameter E describing the overall tidal
attenuation rate in the planet. The power scaling law
mentioned in section 3 may be expressed as

Q ¼ Eaca; ð24Þ

where Ea is simply the dimensional factor emerging in the
relation Q � ca. As mentioned in section 3.5, cooling of the
planet should become a part of long-term orbital calcula-
tions. It enters these calculations through evolution of this
parameter E. Under the assumption that most of the tidal
dissipation is taking place in some layer, for which an
average temperature T and an average activation energy A*
may be defined, (17) yields:

E ¼ Eo exp
A*

R

1

To
� 1

T

� �" #
;

Eo and To being the values of the integral parameter and
temperature at some fiducial epoch. The physical meaning
of the integral parameter E is transparent: if the planet were

assembled of a homogeneous medium, with a uniform
temperature distribution, and if attenuation in this medium
were caused by one particular physical mechanism, then E
would be a relaxation timescale associated with this
mechanism (say, the time of defect displacement). For a
realistic planet, E may be interpreted as a relaxation time
averaged (in the sense of Q = Eaca) over the planet’s layers
and over the various damping mechanisms acting within
these layers.
[37] As (10) entails d  1/(2Q) = (1/2) E�a c�a, then

(21) necessitates for the position lag:

~f ¼ r d f̂ ¼ 1

2
r E�a c�a f̂ ; ð25Þ

and for the time lag:

Dt ¼ E�a c� aþ1ð Þ; ð26Þ

E being the planet’s integral parameter introduced above,
and c being a known function (4) of the orbital variables.
Putting everything together, we arrive at

~f ¼ 1

2
Ecð Þ�a

a
1� e2

1þ e cos n
~wp 	~r �~v

j~wp 	~r �~vj

¼ 1

2
Ecð Þ�a

a
~wp 	~r �~v

j~wp 	~r �~vj þ O eð Þ; ð27Þ

where

c � 2 jwp � nj: ð28Þ

The time lag is, according to (26):

Dt ¼ E 2 E jwp � nj
� �� aþ1ð Þ

: ð29Þ

Formulae (29), (27), and (20) are sufficient to both compute
the orbit evolution and trace the variations of the time lag.

5. Example of Phobos’s Fall to Mars

[38] As an illustrative example, let us consider how the
realistic dependence Q(c) alters the life time left for
Phobos. We shall neglect the fact that Phobos is close to
its Roche limit, and may be destroyed by tides prior to its
fall. We also shall restrict the dynamical interactions be-
tween Phobos and Mars to a two-body problem disturbed
solely with the tides raised by Phobos on Mars. Thus we
shall omit all the other perturbations, like the Martian non-
sphericity and precession, or the pull exerted upon Phobos
by the Sun, the planets, and Deimos. If, along with these
simplifications, we assume the eccentricity and inclination
to be small, then we shall be able to describe the evolution
of the semimajor axis by means of the following equation
[Kaula, 1964, p. 677, formula (41)]:

da

dt
¼ � 3 k2 R

5 Gm

Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G Mo þ mð Þ

p
a11=2

; ð30Þ

with Mo and m denoting the masses of Mars and Phobos.
This equation can be solved analytically, provided the
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quality factor Q is set constant (as done by Kaula [1964]).
The solution is:

a tð Þ ¼ � 39k2R
5Gm

2Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G M þ mð Þ

p t þ a13=2o

 !2=13

ð31Þ

ao � a(t)jt=0 being the initial value of Phobos’s semimajor
axis.
[39] Unfortunately, neither our model (wherein Q is given

by (24)) nor the Singer-Mignard model (with Q scaling as
1/c) admit such an easy analytical solution. This compels
us to rely on numerics. In a (quasi)inertial frame centered
at Mars, the equation of motion looks:

d2~r

dt2
¼ �G Mo þ mð Þ~r

r3
� 3k2G Mo þ mð ÞmR5

r10Mo

�~f r2 � 2~r ~r �~f
� �h i

ð32Þ

Naturally, its right-hand side consists of the principal, two-
body contribution - G(Mo + m)~r/r3 and the disturbing tidal
force given by (20). It should be noted, however, that we did
not bring in here all the terms from (20). FollowingMignard
[1980], we retain in (32) only the perturbing terms
dependent on ~f . The other perturbing term (the first term
on the right-hand side of (20)) is missing in (32), because it
provides no secular input into the semimajor axis’s evolution.
For a proof of this fact see Appendix A, section A3.
[40] Phobos’s orbital motion may be described with the

planetary equations in the Euler-Gauss form. In assumption

of i and e being small, the problem conveniently reduces to
one equation:

da

dt
¼ 2S

n
; ð33Þ

where S is the tidal acceleration given by the second term
of (32) projected onto the instantaneous direction of the
satellite motion. This direction is defined by the unit
vector (~H 	 ~r)/j~H 	 ~rj, where ~H denotes the angular-
momentum vector. Thence the said projection reads:

S ¼ � 3k2G Mo þ mð ÞmR5

r10Mo

�r2Dt ~wp 	~r �~v
� �

þ 2~rDt ~r �~vð Þ
� �

�
~H 	~r
� �
j~H 	~rj

:

ð34Þ

Mignard [1980] gives the appropriate expression with a
wrong sign. This is likely to be a misprint, because the
subsequent formulae in his paper are correct.
[41] In assumption of i and e being negligibly small,

(~H 	 ~r) � (~wp 	 ~r) can be approximated with n a4 wp,
whereafter (34) gets simplified to

S ¼ � 3k2R
5G Mo þ mð ÞmDt

Moa7
n� wp

� �
; ð35Þ

substitution whereof into (33) entails the following equation
to integrate:

da

dt
¼ � 6k2R

5nmDt

Moa4
n� wp

� �
: ð36Þ

Figure 2. Evolution of Phobos’s semimajor axis, as predicted by different models. The lines (from left
to right) correspond to the Singer-Mignard model, to the Gerstenkorn-McDonald-Kaula model, and to the
realistic rheology with a = 0.3, with a = 0.2, and with a = 0.4.
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Our computational scheme was based on the numerical
integrator RA15 offered by Everhart [1985]. The initial
value of a, as well as the values of all the other physical
parameters entering (36), were borrowed from Lainey et al.
[2007]. These included an estimate of 0.6644 min for the
present-day time lag Dt.
[42] Four numerical simulations were carried out. One of

these implemented the Singer-Mignard model with a tidal-
frequency-independent Dt. The other three integrations
were performed for the realistic frequency dependence
(29), with a = 0.2, 0.3 and 0.4.
[43] To find the integral parameter E emerging in (26), we

used the present-day values ofDt and n. The resulting values
of E were found to be 1201	105 day rad�1, 81028 day rad�1

and 2104 day rad�1 for a = 0.2, 0.3 and 0.4, respectively.
We did not take into account the strong temperature depen-
dence of E, leaving this interesting topic for discussion
elsewhere.
[44] Simultaneous numerical integration of equations (29)

and (36) results in plots presented on Figures 2 and 3. The
first of these pictures shows the evolution of Phobos’s
semimajor axis from its present value until the satellite
crashes on Mars, having descended about 6000 km. The
leftmost curve reproduces the known result that, according
to the Singer-Mignard model with a constant Dt, Phobos
should fall on Mars in about 29 Ma. The next curve was
obtained not numerically but analytically. It depicts the
analytical solution (31) available for the Gerstenkorn-
MacDonald-Kaula model with a constant Q, and demon-
strates that this model promises to Phobos a longer age,
38 Ma. The three curves on the right were obtained by
numerical integration of (29) and (36). They correspond to

the realistic rheology with a equal to 0.2, 0.3 and 0.4. It can
be seen that within the realistic model Phobos is expected to
survive for about 40–43 Ma, dependent upon the actual
value of a of the Martian mantle. This is about 15 Ma
longer than within the Singer-Mignard model widely ac-
cepted hitherto.
[45] (In the paragraph after his formula (18), Mignard

[1981] states that ‘‘Phobos will end its life in about 36
million years.’’ Mignard arrived at that number by using an
old estimate of 20 deg/ca2 for the initial tidal acceleration.
Later studies, for example, Jacobson et al. [1989] and
Lainey et al. [2007], have shown that this value should be
increased to 25.4 deg/ca2. It is for this reason that our
simulation based on the Singer-Mignard model gives not 36
but only 29 Ma for Phobos’s remaining lifetime.)
[46] The difference between the three scenarios shown on

Figure 2 stems from the different rate of evolution of the lag
Dt in the three theories addressed. Within the Singer-
Mignard formalism, Dt stays unchanged through the de-
scent. As can be seen from formula (29), this is equivalent
to setting a = � 1, an assertion not supported by geophys-
ical data. Within the Gerstenkorn-MacDonald-Kaula model,
the time lag is subject to a gradual decrease described by the
formula

Dt ¼ arctan 1=Qð Þ
2 jn� wpj

ð37Þ

under the assumption that Q is constant and is equal to its
present-day value Q = 79.91 determined by Lainey et al.
[2007]. Comparison of (37)with (29) reminds us of the simple
fact that, in terms of our model, Gerstenkorn-MacDonald-

Figure 3. Evolution of Dt computed for three different models. The upper horizontal line corresponds
to the Singer-Mignard model wherein Dt is set to be constant. The other four lines correspond to the
Gerstenkorn-MacDonald-Kaula model and to the realistic rheology with a = 0.3, with a = 0.2, and with
a = 0.4.
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Kaula’s theory corresponds to the choice of a = 0, a choice
which is closer to the realistic rheology than the Singer-
Mignard model.
[47] In the realistic model, a is positive and assumes a

value of about 0.2–0.4. As a result, the time lag is gradually
decreasing. However this decrease looks different from that
in Gerstenkorn-MacDonald-Kaula’s model; for their com-
parison, see Figure 3.

6. Conclusions

[48] As the tidal angular lag d is inversely proportional to
the tidal Q factor, the actual frequency dependence of both d
and Dt is unambiguously defined by the frequency depen-
dence of Q. While in the Gerstenkorn-MacDonald-Kaula
theory of tides the geometric lag is assumed frequency-
independent, in the Singer-Mignard theory it is the time lag
that is spared of frequency dependence. However, neither of
these two choices conform to the geophysical data.
[49] We introduce a realistic tidal model, which permits

the quality factor and therefore both the angular lag d and
the time lag Dt to depend on the tidal frequency c. The
quality factor is wont, according to numerous studies, to
obey the law Q � ca, where a lies within 0.2–0.4. This
makes the time lag Dt not a constant but a function (26) of
the principal tidal frequency and, through (29), of the orbital
elements of the satellite. The same pertains to the angular
lag d.
[50] Using these tidal-frequency dependencies for the

time and angular lags, along with the recently updated
values of the Martian parameters, we explored the future
of Phobos, taking into account only the tides raised by
Phobos on Mars, but not those caused by Mars on Phobos.
Our integration shows that Phobos will fall on Mars in 40–
43 Ma from now. It is up to 50% longer than the estimate
stemming from the Singer-Mignard model employed in the
past. This demonstrates that the currently accepted time-
scales of dynamical evolution, deduced from old tidal
models, should be reexamined using the actual frequency
dependence of the lags.

Appendix A

[51] The goal of this appendix is threefold. First, we
remind the reader why in the first approximation the quality
factor is inversely proportional to the phase lag. Second, we
explain why the phase lag is twice the geometric lag angle,
as in formulae (8)–(9) above. While a comprehensive
mathematical derivation of this fact can be found elsewhere
(see the unnumbered formula between equations (29) and
(30) on p. 673 of Kaula [1964]), here we illustrate this
counterintuitive result by using the simplest setting. Third,
we justify our neglect of the first term in (20).

A1. The Case of a Near-Circular Near-Equatorial
Orbit

[52] Consider the simple case of an equatorial moon on a
circular orbit. At each point of the planet, the tidal potential
produced by this moon will read

W ¼ Wo cosct; ðA1Þ

the tidal frequency being given by

c ¼ 2jn � wpj: ðA2Þ

Let g denote the free-fall acceleration. An element of the
planet’s volume lying beneath the satellite’s trajectory will
then experience a vertical elevation of

z ¼ Wo

g
cos ct � 2dð Þ: ðA3Þ

Accordingly, the vertical velocity of this element of the
planet’s volume will amount to

u ¼ _z ¼ �c
Wo

g
sin ct � 2dð Þ

¼ �c
Wo

g
sinct cos 2d � cosct sin 2dð Þ: ðA4Þ

The expression for the velocity has such a simple form
because in this case the instantaneous frequency c is
constant. The satellite generates two bulges (on the facing
and opposite sides of the planet), so each point of the
surface is uplifted twice through a cycle. This entails the
factor of two in the expressions (A2) for the frequency. The
phase in (A3), too, is doubled, though the necessity of this is
less evident. Let x signify a position along the equatorial
circumference of the planet. In the absence of lag, the radial
elevation at a point x would be

z ¼ Wo

g
cos k x� vtð Þ; v ¼ R�;

v being the velocity of the satellite’s projection on the
ground, R being the planet’s radius, and s being simply jn �
wpj because we are dealing with a circular equatorial orbit.
The value of k must satisfy

kv ¼ 2s; i:e:; kv ¼ �;

to make sure that at each x the ground elevates twice per an
orbital cycle. The above two formulae yield:

kR ¼ 2:

In the presence of lag, all above stays in force, except that
the formula for radial elevation will read:

z ¼ Wo

g
cos k x� vtþ Dð Þ; where D ¼ Rd;

D being the linear lag, and d being the angular one. Since
k v = 2, we get:

cos k x� vtþ Rd
1

ð Þ½ � ¼ cos kx� kvtþ kRd½ �
¼ cos kx� kvt� 2dð Þ½ �;
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so that, at some fixed point (say, at x = 0) the elevation
becomes:

z tð Þ ¼ Wo

g
cos kvt� 2dð Þ:

We see that, while the geometric lag is d, the phase lag is
double thereof.
[53] The energy dissipated over a time cycle T = 2p/c, per

unit mass, will, in neglect of horizontal displacements, be

DE
cycle

¼
Z T

0

u � @W

@r

� �
dt ¼ � �c

Wo

g

� �
@Wo

@r

�
Z t¼T

t¼0

cosct sinct cos 2d � cosct sin 2dð Þ dt

¼ �c
Wo

g

@Wo

@r
sin 2d

1

c

Z ct¼2p

ct¼0

cos2 ct d ctð Þ

¼ �Wo

g

@Wo

@r
p sin 2d; ðA5Þ

while the peak energy stored in the system during the cycle
will read:

E
peak

¼
Z T=4

0

u � @W

@r

� �
dt ¼ � �c

Wo

g

� �
@Wo

@r

�
Z t¼T=4

t¼0

cosct sinct cos 2d � cosct sin 2dð Þ dt

¼ 2s
Wo

g

@Wo

@r

cos 2d
c

Z ct¼p=2

ct¼0

cosct sinct d ctð Þ
"

� sin 2d
c

Z ct¼p=2

ct¼0

cos2 ct d ctð Þ
#

¼ Wo

g

@Wo

@r

1

2
cos 2d � p

4
sin 2d

� �
ðA6Þ

whence

Q�1 ¼
�DE

cycle

2pE
peak

¼ 1

2p
p sin 2d

1
2
cos 2d � p

4
sin 2d

 tan 2d: ðA7Þ

The above formulae were written down in neglect of
horizontal displacements, approximation justified below in
the language of continuum mechanics.

A2. On the Validity of our Neglect of the
Horizontal Displacements

[54] In our above derivation of the interrelation between
Q and d, we greatly simplified the situation, taking into
account only the vertical displacement of the planetary
surface, in response to the satellite’s pull. Here we shall
demonstrate that this approximation is legitimate, at least in
the case when the planet is modeled with an incompressible
and homogeneous medium.
[55] As a starting point, recall that the tidal attenuation

rate within a tidally distorted planet is well approximated
with the work performed on it by the satellite. (A small
share of this work is being spent for decelerating the planet
rotation.) Thus we shall write down the attenuation rate as

_E ¼ �
Z

r~VrWd3x; ðA8Þ

where r, ~V and W are the density, velocity, and tidal
potential inside the planet. To simplify this expression, we
shall employ the equality

r~VrW ¼ r � r~VW
� �

�W~V � rr�Wr � r~V
� �

¼ r � r~VrW
� �

�W~V � rrþW
@r
@t

: ðA9Þ

For a homogeneous and incompressible primary, both the~v
W r r and @r/@ t terms are nil, wherefrom

_E ¼ �
Z

rW~V �~nd3x; ðA10Þ

~n being the outward normal to the surface of the planet. We
immediately see that, within the hydrodynamical model, it
is only the radial elevation rate that matters.
[56] Now write the potential asW =Wo cos(c t). Since the

response is delayed by Dt, the surface-inequality rate will
evolve as ~V �~n � sin[c (t � Dt)]. All the rest will then be
as in section A1.

A3. On the Validity of our Neglect of the
Nondissipative Tidal Potential

[57] The right-hand side of equation (32) consists of the
principal part, � G (Mo + m) ~r/r3, and tidal perturbation
terms. These are the second and third terms from the right-
hand side of (20), terms that bear a dependence on ~f and,
therefore, on Dt. The first term from the right-hand side of
(20) lacks such a dependence and therefore is omitted in
(32). The term was dropped because it would provide no
secular input into the history of the semimajor axis. Here we
shall provide a proof of this statement.
[58] The omitted term corresponds to a potential

[Mignard, 1980]:

U0 ¼
k2 Mo þ mð ÞGmR5

2Mor6
: ðA11Þ

From the physical standpoint, U0 models the effect of the
tidal bulges, assuming their direction to coincide with that
toward the tide-raising satellite. This potential entails no
angular-momentum exchange, and therefore yields no
secular effect on the semimajor axis. To prove this, let us
decompose this potential into a series over the powers of e.
This will require of us to derive the expression of (a/r)6.
Starting out with the well known development

a

r
¼ 1þ

X1
p¼1

2Jp peð Þ cos pMð Þ

¼ 1þ e cos Mð Þ þ e2 cos 2Mð Þ þ 9

8
cos 3Mð Þ � 1

8
cos Mð Þ

� �
e3

þ � 1

3
cos 2Mð Þ þ 4

3
cos 4Mð Þ

� �
e4

þ � 81

128
cos 3Mð Þ þ 1

192
cos Mð Þ þ 625

384
cos 5Mð Þ

� �
e5

þ 81

40
cos 6Mð Þ þ 1

24
cos 2Mð Þ � 16

15
cos 4Mð Þ

� �
e6 þ . . . ;

ðA12Þ
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one can arrive at the following expansion:

a

r

� �6
¼ 1þ 6e cos Mð Þ þ 15

2
þ 27

2
cos 2Mð Þ

� �
e2

þ 107

4
cos 3Mð Þ þ 117

4
cos Mð Þ

� �
e3

þ 197

4
cos 4Mð Þ þ 101

2
cos 2Mð Þ þ 105

4

� �
e4

þ 5157

64
cos 3Mð Þ þ 5529

64
cos 5Mð Þ þ 2721

32
cos Mð Þ

� �
e5

þ
�
4839

40
cos 4Mð Þ þ 129 cos 2Mð Þ

þ 525

8
þ 732

5
cos 6Mð Þ

�
e6 þ . . . ; ðA13Þ

whose average over the mean anomaly looks like:

h a

r

� �6
i ¼ 1þ 15

2
e2 þ 105

4
e4 þ 525

8
e6 þ . . . ðA14Þ

Hence the averaged potential will become:

hU0i ¼
k2 M0 þ mð ÞGmR5

2M0a6
1þ 15

2
e2 þ 105

4
e4 þ 525

8
e6 þ . . .

� �
ðA15Þ

In the case of Phobos, the terms of order O(e2) may, in the
first approximation, be neglected. This means that out of the
six Lagrange-type planetary equations the first five will, in
the first order of e, stay unperturbed, and therefore the
elements a, e, w, i, W will, in the first order over e, remain
unchanged. The Lagrange equation for the longitude will be
the only one influenced by U0. That equation will assume
the form:

dL

dt
¼ n� 2

na

@hU0i
@a

ðA16Þ

which gives

L ¼ nt þ 6k2 Mo þ mð ÞGmR5

Mona8
t ðA17Þ

We see that in the first order of e the only secular effect
stemming from the potential U0 is a linear in time evolution
of the longitude.
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